
Statistics 5444: Homework 3

For each homework assignment, turn in at the beginning of class on the indicated due
date. Late assignments will only be accepted with special permission. Write each
problem up very neatly (LATEX is preferred). Show all of your work.

Problem 1

In this problem, you will construct a sampler for fitting a line to data, which has
Cauchy innovations.

Part 1

Simulate 1,000 points (x,y), where (x, y) ∼ Cauchy(0, 1), with covariance structure(
1 0.8

0.8 1

)
.

Plot the realizations of your simulation.

Part 2

Recall that under the model: yi = β0 + β1xi + ε, where ε ∼ N(0, σ2), we can derive
the posterior estimate

β ∼ N((XTX)−1XTY, σ2(XTX)−1). (1)

Fit a standard regression line of the form y = β0 +β1x to the data. Plot the residuals
and make a QQ plot to illustrate how poorly the “Least Squares” fit performs.

Part 3

Under the gamma-normal (scale) mixture model, we have

β ∼ N((XTX)−1XTY,
σ2

γ
(XTX)−1),

where γ ∼ Gamma(a, b). Find a and b so that β has a Cauchy distribution with shift
(XTX)−1XTY and scale σ2(XTX)−1.
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Problem 3

In problem 2 we obtained some insight on how to sample from a Cauchy regression
model. We will further the insight here. Consider the model:

yi ∼ Normal(xTi β, σ
2/γi),

γi ∼ Gamma(a, b),

for i = 1, . . . , N .

Part 1a

Write out the full conditional distributions for β and φ = 1/σ2, under the reference
priors. (Note: for a given value of γ, the full conditional distribution for β should be
obvious.)

Part 1b

Write out the full conditional sampling distribution for γi, i = 1, . . . , N . Notice that
for each sample draw, you used a random γ, so there is a posterior distribution on γi
for each sample draw.

Part 2

Write out a Gibbs sampling procedure for sampling from (β, φ = 1/σ2, γi). You do
not need to implement this, just write out the pseudo code.

Problem 4

Recall that the trace of a matrix A is defined to be the sum of the diagonal elements
of A, or equivalently it is the sum of its eigenvalues. Let tr(A) denote the trace of
the matrix A.;

Part 1

Show that
tr(A+B) = tr(A) + tr(B).

Part 2

Show that
tr(AB) = tr(BA).
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Problem 4

Let us consider the example in class where measurements of rats weights were mea-
sured through time. Letting xij denote the weight of rate i in week j. For this we
assumed the model

xij ∼ N(αi + βij, σ
2 = 1/φ),

which simply specifies a regression model for each individual rat. We further assumed
that each rats regression coefficients were modeled through(

αi
βi

)
∼ N(

(
α0

β0

)
,Σ).

You might interpret (α0, β0) as the underlying average population regression coeffi-
cients for rats weights. The model also specifies that individuals regression coefficients
may not be independent, hence the arbitrary covariance structure Σ. This model is a
referred to as a random effects model, where the regression coefficients for individual
rats are the random effects. Suppose we want to perform a Bayesian analysis, and
for convenience we choose to do a conjugate analysis. The conjugate priors are

φ ∼ Gamma(a, b)

(α0, β0)T ∼ N(η,Ψ)

Σ−1 ∼ Wishart((ρR)−1, ρ).

Hint: recall p(Σ−1) ∝ |Σ−1|(ρ−2−1)/2e−
1
2
tr(ρRΣ−1).

Derive the full conditional distributions for: φ, (α0, β0)T , and Σ−1.

Problem 5

Let X = (x1, . . . xn) and let xi ∼ N(µ = 200, φ = 1
2
), where φ = 1/σ2

Part 1

Under reference priors, write down the full conditional distribution for µ and φ. You
don’t need to derive these again, just state what they are.

Part 2

Implement a Metropolis-Hastings sampler for sampling (µ, φ|X) in a “block”. Discuss
your burn-in time, and the proposal you used for this problem.
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Part 2

Implement a Gibbs sampler for sampling from the distribution for (µ, φ|X), where X
is a 100 simulated data points from the above model. Initialize the sampler at µ0 = 0
and φ = 5. Show the trace plots for both µ and φ. Report the burn-in time and
illustrate histograms for both of the marginal posteriors (after burn-in).

Problem 6

Let X = {X1, . . . Xn}, where Xi = (x1, . . . xk)
T , and Xi ∼ N(µ,Σ). Under p(µ) ∝ 1,

we found previously that p(µ|X,Σ) has a multivariate normal distribution with mean∑
iXi/N and variance matrix Σ/N .

Under the prior p(Σ) ∝ |Σ|−(k+1)/2, find p(µ|X).

4



Problem 7

Let x = (x1, . . . , xn), were xi ∼ Bin(N, p). Find the Jeffreys prior for p.
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