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Abstract

Principal component analysis (PCA) is a ubiquitous technique for data analysis
and processing, but one which is not based upon a probability model. In this pa-
per we demonstrate how the principal axes of a set of observed data vectors may
be determined through maximum-likelihood estimation of parameters in a latent
variable model closely related to factor analysis. We consider the properties of the
associated likelihood function, giving an EM algorithm for estimating the princi-
pal subspace iteratively, and discuss, with illustrative examples, the advantages
conveyed by this probabilistic approach to PCA.
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1 Introduction

Principal component analysis (PCA) (Jolliffe 1986) is a well-established technique for dimension-
ality reduction, and a chapter on the subject may be found in numerous texts on multivariate
analysis. Examples of its many applications include data compression, image processing, visual-
isation, exploratory data analysis, pattern recognition and time series prediction.

The most common derivation of PCA is in terms of a standardised linear projection which max-
imises the variance in the projected space (Hotelling 1933). For a set of observed d-dimensional
data vectors �tn�� n � �1� � � � �N�, the q principal axes w j, j � �1� � � � � q�, are those orthonormal axes
onto which the retained variance under projection is maximal. It can be shown that the vectors
w j are given by the q dominant eigenvectors (i.e. those with the largest associated eigenvalues � j)
of the sample covariance matrix S � ∑n(tn � t)(tn � t)T�N, where t is the data sample mean, such
that Sw j � � jw j. The q principal components of the observed vector tn are given by the vector
xn �WT(tn � t), where W� (w1�w2� � � � �wq). The variables x j are then uncorrellated such that the
covariance matrix ∑n xnxT

n�N is diagonal with elements � j.

A complementary property of PCA, and that most closely related to the original discussions of
Pearson (1901) is that, of all orthogonal linear projections xn � WT(tn � t), the principal compo-
nent projection minimises the squared reconstruction error ∑n �tn � t̂n�2, where the optimal linear
reconstruction of tn is given by t̂n �Wxn� t.

However, a notable feature of these definitions of PCA (and one remarked upon in many texts) is
the absence of an associated probabilistic model for the observed data. The objective of this paper
is therefore to address this limitation by demonstrating that PCA may indeed be derived within
a density-estimation framework.

We obtain a probabilistic formulation of PCA from a Gaussian latent variable model which is
closely related to statistical factor analysis. This model is outlined in Section 2, where we discuss
the existing precedence for our approach in the literature. Within the framework we propose, de-
tailed in Section 3, the principal axes emerge as maximum-likelihood parameter estimates which
may be computed by the usual eigen-decomposition of the sample covariance matrix and subse-
quently incorporated in the model. Alternatively, the latent-variable formulation leads naturally
to an iterative, and computationally efficient, expectation-maximisation (EM) algorithm for ef-
fecting PCA.

Such a probabilistic formulation is intuitively appealing, as the definition of a likelihood measure
enables comparison with other probabilistic techniques, while facilitating statistical testing and
permitting the application of Bayesian methods. However, a further motivation is that probabilis-
tic PCA conveys additional practical advantages:

� The probability model offers the potential to extend the scope of conventional PCA. For
example, we illustrate in Section 4 how multiple PCA models may usefully be combined as
a probabilistic mixture and how PCA projections may be obtained when some data values
are missing.

� As well as its application to dimensionality reduction, probabilistic PCA can be utilised
as a general Gaussian density model. The benefit of so doing is that maximum-likelihood
estimates for the parameters associated with the covariance matrix can be efficiently com-
puted from the data principal components. Potential applications include classification and
novelty detection, and we again give an example in Section 4.

We conclude with a discussion in Section 5, while mathematical details concerning key results are
left to the appendices.
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2 Latent Variable Models, Factor Analysis and PCA

2.1 Factor Analysis

A latent variable model seeks to relate a d-dimensional observation vector t to a corresponding
q-dimensional vector of latent (or unobserved) variables x. Perhaps the most common such model
is factor analysis (Bartholomew 1987; Basilevsky 1994) where the relationship is linear:

t�Wx��� �� (1)

The d� q matrix W relates the two sets of variables, while the parameter vector � permits the
model to have non-zero mean. The motivation is that, with q � d, the latent variables will of-
fer a more parsimonious explanation of the dependencies between the observations. Conven-
tionally, x � N (0� I), and the latent variables are defined to be independent and Gaussian with
unit variance. By additionally specifying the error, or noise, model to be likewise Gaussian
� � N (0�Ψ), equation (1) induces a corresponding Gaussian distribution for the observations
t � N (��WWT

�Ψ). The model parameters may thus be determined by maximum-likelihood,
although because there is no closed-form analytic solution for W and Ψ, their values must be
obtained via an iterative procedure.

The motivation, and indeed key assumption, for the factor analysis model is that, by constrain-
ing the error covariance Ψ to be a diagonal matrix whose elements �i are usually estimated from
the data, the observed variables ti are conditionally independent given the values of the latent vari-
ables x. These latent variables are thus intended to explain the correlations between observation
variables while �i represents variability unique to a particular ti. This is where factor analysis
fundamentally differs from standard PCA, which effectively treats covariance and variance iden-
tically.

2.2 Links from Factor Analysis to PCA

Because of the distinction made between variance and covariance in the standard factor analysis
model, the subspace defined by the maximum-likelihood estimates of the columns of W will
generally not correspond to the principal subspace of the observed data. However, certain links
between the two methods have been previously established, and such connections centre on the
special case of an isotropic error model, where the residual variances � i � �2 are constrained to be
equal.

This approach was adopted in the early Young-Whittle factor analysis model (Young 1940; Whittle
1952), where in addition, the residual variance �2 was presumed known (i.e. the model likelihood
was a function of W alone). In that case, maximum-likelihood is equivalent to a least-squares
criterion, and a principal component solution emerges in a straightforward manner.

The methodology employed by Young and Whittle differed to that conventionally adopted, since
the factors x were considered as parameters to be estimated rather than random variables. How-
ever, a stochastic treatment of x recovers a similar result, given that the d� q smallest eigenvalues
of the sample covariance S are equal to �2. In that case, it is simple to show that the observa-
tion covariance model WWT

� �2I can be made exact (assuming correct choice of q), and both W
and �2 may then be determined analytically through eigen-decomposition of S, without resort to
iteration (Anderson 1963; Basilevsky 1994, pp. 361–363).

However, it is restrictive (and rarely justified in practice) to assume that either �2 is known or that
the model of the second-order statistics of the data is exact. Indeed, in the presence of additive
observation noise, an exact covariance model is generally undesirable. This is particularly true in
the practical application of PCA, where we often do not require an exact characterisation of the
covariance structure in the minor subspace, since this information is effectively ‘discarded’ in the
dimensionality reduction process.
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In the remainder of this paper we therefore focus on the case of most interest and consider the
nature of the maximum-likelihood estimators for W and �2 in the realistic case where the pro-
posed model covariance is not equal to its sample counterpart, and where �2 must be estimated
from the data (and so enters into the likelihood function). This case has indeed been investigated,
and related to PCA, in the early factor analysis literature by Lawley (1953) and by Anderson and
Rubin (1956), although this work does not appear widely known. Those authors show that sta-
tionary points of the likelihood function occur when W is a matrix whose columns are scaled
eigenvectors of the sample covariance matrix S, and �2 is the average variance in the discarded
dimensions (we give details shortly). These derivations, however, fall short of showing that the
principal eigenvectors represent the global maximum of the likelihood.

In the next section we re-establish this link between PCA and factor analysis, while also extending
the earlier derivation to show (in Appendix A) that the maximum-likelihood estimators WML and
�2

ML for the isotropic error model do indeed correspond to principal component analysis. We
give a full characterisation of the properties of the likelihood function for what we choose to
term “probabilistic PCA” (PPCA). In addition, we give an iterative EM algorithm for estimating
the parameters of interest with potential computational benefits. Finally, to motivate this work
and to underline how the definition of the probability model can be advantageously exploited in
practice, we offer some examples of the practical application of PPCA in Section 4.

3 Probabilistic PCA

3.1 The Probability Model

The use of the isotropic Gaussian noise model N (0� �2I) for � in conjunction with equation (1)
implies that the x-conditional probability distribution over t-space is given by

t�x � N (Wx��� �2I)� (2)

With the marginal distribution over the latent variables also Gaussian and conventionally defined
by x�N (0� I), the marginal distribution for the observed data t is readily obtained by integrating
out the latent variables and is likewise Gaussian:

t � N (��C)� (3)

where the observation covariance model is specified by C �WWT
� �2I. The corresponding log-

likelihood is then

L � �
N
2
�

d ln(2�)� ln �C�� tr
�
C�1S

��
� (4)

where

S �
1
N

N

∑
n�1

(tn ��)(tn ��)T� (5)

The maximum-likelihood estimator for � is given by the mean of the data, in which case S is the
sample covariance matrix of the observations �tn�. Estimates for W and �2 may be obtained by
iterative maximisation of L , for example using the EM algorithm given in Appendix B, which
is based on the algorithm for standard factor analysis of Rubin and Thayer (1982). However, in
contrast to factor analysis, M.L.E.s for W and �2 may be obtained explicitly, as we see shortly.

Later, we will make use of the conditional distribution of the latent variables x given the observed
t, which may be calculated using Bayes’ rule and is again Gaussian:

x�t � N (M�1WT(t��)� �2M�1)� (6)

where we have defined M �WTW� �2I. Note that M is of size q� q while C is d� d.
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3.2 Properties of the Maximum-Likelihood Estimators

In Appendix A it is shown that, with C given by WWT
� �2I, the likelihood (4) is maximised

when:

WML � Uq(Λq � �2I)1�2R� (7)

where the q column vectors in the d� q matrix Uq are the principal eigenvectors of S, with cor-
responding eigenvalues �1� � � � � �q in the q� q diagonal matrix Λq, and R is an arbitrary q� q or-
thogonal rotation matrix. Other combinations of eigenvectors (i.e. non-principal ones) correspond
to saddle-points of the likelihood function. Thus, from (7), the latent variable model defined by
equation (1) effects a mapping from the latent space into the principal subspace of the observed
data.

It may also be shown that for W �WML, the maximum-likelihood estimator for �2 is given by

�2
ML �

1
d� q

d

∑
j�q�1

� j� (8)

which has a clear interpretation as the variance ‘lost’ in the projection, averaged over the lost
dimensions.

In practice, to find the most likely model given S, we would first estimate �2
ML from (8), and then

WML from (7), where for simplicity we would effectively ignore R (i.e. choose R � I). Alterna-
tively, we might employ the EM algorithm detailed in Appendix B, where R at convergence can
be considered arbitrary.

3.3 Factor Analysis Revisited

Although the above estimators result from application of a simple constraint to the standard fac-
tor analysis model, we note that an important distinction resulting from the use of the isotropic
noise covariance �2I is that PPCA is covariant under rotation of the original data axes, as is stan-
dard PCA, while factor analysis is covariant under component-wise rescaling. Another point of
contrast is that in factor analysis, neither of the factors found by a two-factor model is necessar-
ily the same as that found by a single-factor model. In probabilistic PCA, we see above that the
principal axes may be found incrementally.

3.4 Dimensionality Reduction

The general motivation for PCA is to transform the data into some reduced-dimensionality repre-
sentation, and with some minor algebraic manipulation of WML, we may indeed obtain the stan-
dard projection onto the principal axes if desired. However, it is more natural from a probabilistic
perspective to consider the dimensionality-reduction process in terms of the distribution of the
latent variables, conditioned on the observation. From (6), this distribution may be conveniently
summarised by its mean:

	xn�tn
�M�1WML
T(tn ��)� (9)

(Note, also from (6), that the corresponding conditional covariance is given by �2
MLM�1 and is

thus independent of n.) It can be seen that when �2 � 0, M�1 � (WML
TWML)�1 and (9) then rep-

resents an orthogonal projection into latent space and so standard PCA is recovered. However,
the density model then becomes singular, and thus undefined. In practice, with �2 	 0 as deter-
mined by (8), the latent projection becomes skewed towards the origin as a result of the Gaussian
marginal distribution for x. Because of this, the reconstruction WML	xn�tn
� � is not an orthog-
onal projection of tn, and is therefore not optimal (in the squared reconstruction-error sense).
Nevertheless, optimal reconstruction of the observed data from the conditional latent mean may
still be obtained, in the case of �2 	 0, and is given by WML(WML

TWML)�1M	xn�tn
��.
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4 Examples

Here we give three examples of how probabilistic PCA can be exploited in practice. We first con-
sider the visualisation of data sets with missing values, and then extend this single projection
model to the mixture case, before finally giving an example of how the covariance parameteri-
sation implicit in PPCA offers an effective mechanism for restricting the number of degrees of
freedom in a Gaussian model.

4.1 Missing Data

Probabilistic PCA offers a natural approach to the estimation of the principal axes in cases where
some, or indeed all, of the data vectors tn � (tn1� tn2� � � � � tnd) exhibit one or more missing (at ran-
dom) values. Drawing on the standard methodology for maximising the likelihood of a Gaussian
model in the presence of missing values (Little and Rubin 1987) and the EM algorithm for PPCA
given in Appendix B, we may derive an iterative algorithm for maximum-likelihood estimation
of the principal axes, where both the latent variables �xn� and the missing observations �tn j�
make up the ‘complete’ data. The left plot in Figure 1 shows a projection of 38 examples from the
18-dimensional Tobamovirus data utilised by Ripley (1996, p.291) to illustrate standard PCA. Of
interest in the plot is the evidence of three sub-groupings and the atypicality of example 11. We
simulated missing data by randomly removing each value in the dataset with probability 20%.
On the right in Figure 1 is shown an equivalent PPCA projection obtained using an EM algo-
rithm, where the conditional means have also been averaged over the conditional distribution of
missing, given observed, values. The salient features of the projection remain clear, despite the
fact that all of the data vectors suffered from at least one missing value.
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Figure 1: Projections of Tobamovirus data using PCA on the full dataset (left) and PPCA with 136
missing values (right).

4.2 Mixtures of Probabilistic PCA Models

Because PCA defines a single linear projection and is thus a relatively simplistic technique, there
has been significant recent interest in obtaining more complex projection methods by combining
multiple PCA models, notably for image compression (Dony and Haykin 1995) and visualisation
(Bishop and Tipping 1998). Such a complex model is readily implemented as a mixture of such
probabilistic PCA models. By means of simple illustration, Figure 2 shows three PCA projections
of the above virus data obtained from a three-component mixture model, optimised using an EM
algorithm again derived by combining standard methods (Titterington, Smith, and Makov 1985)
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with the algorithm given in Appendix B. In theory, the projection of every data point would ap-
pear in each plot, corresponding to three sets of principal axes associated with each component
in the mixture, but in practice, examples need not be shown in the plot if the corresponding com-
ponent model has negligible conditional probability of having generated them. This effectively
implements a simultaneous automated clustering and visualisation of data, which is much more
powerful than simply sub-setting the data by eye and performing individual principal compo-
nent analyses. Multiple plots such as these offer the potential to reveal more complex structure
than a single PCA projection alone.
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Figure 2: Projections of Tobamovirus data obtained from a three-component PPCA mixture model.
Note that the locations of these three projection planes can be superimposed on the
single principal component projection plot (that on the left of Figure 1) to further aid
interpretation of the data structure.

4.3 Controlling the Degrees of Freedom

An alternative perspective on PPCA is that it can be applied simply as a covariance model of data,
where the covariance C is defined in terms of the auxiliary parameters W and �2. This is particu-
larly relevant for larger values of data dimensionality d and moderately sized data sets, where it
is usually inappropriate to fit a full covariance model, as this implies the estimation of d(d� 1)�2
free parameters. In such cases, constraints are often placed on the covariance matrix, that it be,
for example, diagonal (with d parameters) or proportional to the identity matrix (one parameter).
The covariance model in probabilistic PCA comprises dq� 1 � q(q � 1)�2 free parameters, and
thus permits control of the model complexity through choice of q. (Here, we stress that we are
considering the predictive power of the model, rather than the explanatory sense in which we
might interpret q in traditional factor analysis.)

We illustrate this in Table 1, which shows the estimated prediction error (in this case, the nega-
tive log-likelihood per example) for various Gaussian models fitted to the Tobamovirus data. The
dimensionality of the data is large, at 18, compared to the number of examples, 38, and so more
complex models easily over-fit. However, a PPCA density model with latent space dimension
q � 2 gives lowest error. More practically, in other problems we could apply PPCA to the mod-
elling of class-conditional densities, and select a value (or values) of q which optimised classi-
fication accuracy. Because the M.L.E.’s for W and �2, and thus C, can be found explicitly by
eigen-decomposition of the sample covariance matrix, the search for an appropriate complexity
of model can be performed explicitly and relatively cheaply.
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Covariance Model Isotropic Diagonal PPCA Full
q (equivalent) (0) (–) 1 2 3 (17)
Number of Parameters 1 18 19 36 52 171
Prediction Error 18.6 19.6 16.8 14.8 15.6 3193.5

Table 1: Complexity and bootstrap estimate of prediction error for various Gaussian models of
the Tobamovirus data. Note that the isotropic and full covariance models are equivalent
to special cases of PPCA, with q � 0 and q � d� 1 respectively.

5 Discussion

In this paper we have reiterated and extended earlier work of Lawley (1953) and Anderson
and Rubin (1956) and shown how principal component analysis may be viewed as a maximum-
likelihood procedure based on a probability density model of the observed data. This probability
model is Gaussian, and the model covariance is determined simply by application of equations
(7) and (8), requiring only the computing of the eigenvectors and eigenvalues of the sample co-
variance matrix. However, in addition to this explicit formulation, we have also given an EM
algorithm for finding the principal axes by iteratively maximising the likelihood function, and
this approach may be more efficient for larger values of data dimensionality as discussed in Ap-
pendix B.

Examples given in Section 4 demonstrated the utility of the probabilistic formalism, where we
performed PCA on a dataset with missing values, generalised the single model to the mixture
case and demonstrated the capacity to constrain the number of free parameters in a Gaussian
density model. Indeed, we have exploited these possibilities in practice to obtain more powerful
algorithms for data visualisation and more efficient methods for image compression.

Finally, we would note that factor analysis is generally applied to elucidate an explanation of data,
and while probabilistic PCA is closely related to factor analysis in formulation, the above exam-
ples reflect that our motivation for its application has in general not been explanatory. Rather, we
have considered PPCA as a mechanism for probabilistic dimension-reduction, or as a variable-
complexity predictive density model.
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A Maximum-Likelihood PCA

A.1 The Stationary Points of the Log-Likelihood

The gradient of the log-likelihood (4) with respect to W may be obtained from standard matrix
differentiation results (e.g. see Krzanowski and Marriott 1994, p. 133):


L

W

� N(C�1SC�1W�C�1W)� (10)

At the stationary points:

SC�1W �W� (11)

assuming that C�1 exists, which we will see requires that q � rank(S), so this assumption implies
no loss of practicality.

There are three possible classes of solutions to (11). The first is, trivially, W� 0, which will be seen
to be a minimum of the log-likelihood. Second is the case C � S, where the covariance model
is exact and the d� q smallest eigenvalues of S are identical as discussed in Section 2.2. Then,
W is identifiable since WWT

� S� �2I has a known solution at W � U(Λ� �2I)1�2R, where U
is a square matrix whose columns are the eigenvectors of S, with Λ the corresponding diagonal
matrix of eigenvalues, and R is an arbitrary orthogonal (i.e. rotation) matrix.

However, the ‘interesting’ solutions represent the third case, where SC�1W �W, but W �� 0 and
C �� S. To find these we first express the parameter matrix W in terms of its singular value de-
composition:

W � ULVT� (12)

where U� (u1�u2� � � � �uq) is a d� q matrix of orthonormal column vectors, L� diag(l1� l2� � � � � lq)
is the q� q diagonal matrix of singular values, and V is a q� q orthogonal matrix. Then, substi-
tuting this decomposition into (11) gives after some manipulation:

SUL� U(�2I� L2)L� (13)

For l j �� 0, equation (13) implies that Su j � (�2
� l2

j )u j for each vector u j. Therefore, each column
of U must be an eigenvector of S, with corresponding eigenvalue � j � �2

� l2
j , and so

l j � (� j � �2)1�2� (14)

For l j � 0, u j is arbitrary. All potential solutions for W may thus be written as

W � Uq(Kq � �2I)1�2R� (15)

where Uq is a d � q matrix whose q columns u j are eigenvectors of S, R is an arbitrary q � q
orthogonal matrix and Kq is a q� q diagonal matrix with elements:

k j �

�
� j� the corresponding eigenvalue to u j, or�
�2�

(16)

where the latter case may be seen to be equivalent to l j � 0.

A.2 The Global Maximum of the Likelihood

The matrix Uq may contain any of the eigenvectors of S, so to identify those which maximise the
likelihood, the expression for W in (15) is substituted into the log-likelihood function (4) to give

L � �
N
2

�
d ln(2�)�

q�

∑
j�1

ln(� j)�
1
�2

d

∑
j�q��1

� j� (d� q�) ln�2
� q�

�
� (17)
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where q� is the number of non-zero l j, �1� � � � � �q� are the eigenvalues corresponding to the eigen-
vectors ‘retained’ in W, and �q��1� � � � � �d are those ‘discarded’. Maximising (17) with respect to
�2 gives

�2
�

1
d� q�

d

∑
j�q��1

� j� (18)

and so

L � �
N
2

�
q�

∑
j�1

ln(� j)� (d� q�) ln

�
1

d� q�
d

∑
j�q��1

� j

�
� d ln(2�)� d

�
� (19)

Note that (18) implies that �2 	 0 if rank(S) 	 q as stated earlier. We wish to find the maximum
of (19) with respect to the choice of eigenvectors/eigenvalues to retain in W, and those to discard.
By exploiting the constancy of the sum of all eigenvalues, the condition for maximisation of the
likelihood can be expressed equivalently as minimisation of the quantity

E � ln

�
1

d� q�
d

∑
j�q��1

� j

�
�

1
d� q�

d

∑
j�q��1

ln(� j)� (20)

which only depends on the discarded values and is non-negative (Jensen’s inequality). Interest-
ingly, minimisation of E leads only to the requirement that the discarded � j be adjacent within
the spectrum of the ordered eigenvalues of S. However, equation (14) also requires that � j 	 �2,
 j � �1� � � � � q��, so from (18), we can deduce from this that the smallest eigenvalue must be dis-
carded. This is now sufficient to show that E must then be minimised when �q��1� � � � � �d are the
smallest d� q� eigenvalues and so the likelihood L is maximised when �1� � � � � �q� are the largest
eigenvalues of S.

It should also be noted that L is maximised, with respect to q�, when there are fewest terms in the
sums in (20) which occurs when q� � q and therefore no l j is zero. Furthermore, L is minimised
when W � 0, which may be seen to be equivalent to the case of q� � 0.

A.3 The Nature of Other Stationary Points

If stationary points represented by minor eigenvector solutions are stable maxima, then local
maximisation (via an EM algorithm for example) is not guaranteed to converge on the global
maximum comprising the principal eigenvectors. We may show, however, that minor eigenvector
solutions are in fact saddle points on the likelihood surface.

Consider a stationary point of the gradient equation (10) at �W � Uq(Kq � �2I)1�2, where Uq may
contain q arbitrary eigenvectors of S, and Kq, as defined in (16), contains either the corresponding
eigenvalue or �2. (For clarity, the rotation R is ignored here, but it can easily be incorporated in
the following analysis.) Then consider a small perturbation to a column vector 	wi in �W of the
form �u j, where � is an arbitrarily small positive constant and u j is a ‘discarded’ eigenvector.

For �W to represent a stable solution, the dot-product of the likelihood gradient at 	wi � �u j and
the perturbation must be negative. This dot-product may be straightforwardly computed and,
ignoring terms in �2, is given by:

�N(� j�ki � 1)uT
jC

�1u j� (21)

where ki is the value in Kq corresponding to 	wi and � j is the eigenvalue corresponding to the
perturbation u j. Since C�1 is positive definite, uT

jC
�1u j 	 0 and so the sign of the gradient is de-

termined by (� j�ki� 1). When ki � �i, this term is negative if �i 	 � j, in which case the maximum
is stable. If �i � � j then �W must be a saddle point. If ki � �2, the stationary point can never be
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stable since, from (18), �2 is the average of d� q� eigenvalues, and so � j 	 �2 for at least one of
those eigenvalues, except when all those eigenvalues are identical. Such a case is considered in the
next section.

From (21), by considering all possible perturbations u j to all possible column vectors 	wi of �W, it
can be seen that the only stable maximum occurs when�W comprises the q principal eigenvectors.

A.4 Equality of Eigenvalues

Equality of any of the q principal eigenvalues does not affect the presented analysis. However,
consideration should be given to the instance when all the d� q minor (discarded) eigenvalue(s)
are equal and identical to one or more of the smallest principal (retained) eigenvalue(s). (In prac-
tice, particularly in the case of sampled covariance matrices, this exact C� S case is unlikely.)

Consider the example of extracting two components from data with a covariance matrix possess-
ing eigenvalues 2, 1 and 1. In this case, the second principal axis is not uniquely defined within
the minor subspace. The spherical noise distribution defined by �2, in addition to explaining the
residual variance, can also optimally explain the second principal component. Because �2 � �2,
l2 in (14) is zero, and W effectively only comprises a single vector. The combination of this single
vector and the noise distribution still represents the maximum of the likelihood.

B An EM Algorithm for Probabilistic PCA

In the EM approach to maximising the likelihood for PPCA, we consider the latent variables �xn�
to be ‘missing’ data and the ‘complete’ data to comprise the observations together with these
latent variables. The corresponding complete-data log-likelihood is then:

LC �

N

∑
n�1

ln�p(tn� xn)� � (22)

where, in PPCA, from the definitions in Section 3.1,

p(tn� xn) � (2��2)�d�2 exp


�
�tn �Wxn ���2

2�2

�
(2�)�q�2 exp



�
�xn�2

2

�
� (23)

In the E-step, we take the expectation of LC with respect to the distributions p(xn�tn�W� �2):

	LC
� �
N

∑
n�1



d
2

ln�2
�

1
2

tr
�
	xnxT

n

�
�

1
2�2 (tn ��)T(tn ��)

�
1
�2 	xn


TWT(tn ��)�
1

2�2 tr
�
WTW	xnxT

n

��

�

(24)

where we have omitted terms independent of the model parameters and

	xn
 �M�1WT(tn ��)� (25)

	xnxT
n
 � �2M�1

� 	xn
	xn

T� (26)

in which M � WTW� �2I as before. Note that these statistics are computed using the current
(fixed) values of the parameters, and follow from (6) earlier.
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In the M-step, 	LC
 is maximised with respect to W and �2 giving new parameter estimates

�W �


∑
n

(tn ��)	xn

T

�
∑
n
	xnxT

n


�
�1

� (27)

��2
�

1
Nd

N

∑
n�1

�
�tn ���2 � 2	xn


T�WT(tn ��)� tr
�
	xnxT

n
�WT�W��
� (28)

To maximise the likelihood then, the sufficient statistics of the conditional distributions are cal-
culated from (25) and (26), after which revised estimates for the parameters are obtained from
(27) and (28). These four equations are iterated in sequence until the algorithm is judged to have
converged.

We may gain considerable insight into the operation of the EM algorithm by substituting for 	xn

and 	xnxT

n
 from (25) and (26) into (27) and (28). Some further manipulation leads to both the
E-step and M-step being combined and re-written as:

�W � SW(�2I�M�1WTSW)�1� (29)

��2
�

1
d

tr
�

S� SWM�1�WT
�
� (30)

where S is again given by

S �
1
N

N

∑
n�1

(tn ��)(tn ��)T� (31)

Note that the first instance of W in equation (30) above is the old value of the parameter matrix,
while the second instance �W is the new value calculated from equation (29). Equations (29), (30)
and (31) indicate that the data enters into the EM formulation only through the covariance matrix
S, as would be expected.

Although it is algebraically convenient to express the EM algorithm in terms of S, note that care
should be exercised in the implementation. When q � d, considerable computational savings
might be obtained by not explicitly evaluating S, even though this need only be done once at ini-
tialisation. Computation of S requires O(Nd2) operations, but inspection of (27) and (28) indicates
that complexity is only O(Ndq). This is reflected by the fact that (29) and (30) only require terms
of the form SW and tr (S). For the former, computing SW as ∑n xn (xT

nW) is O(Ndq) and so more
efficient than (∑n xnxT

n) W, which is equivalent to finding S explicitly. The trade-off between the
cost of initially computing S directly and that of computing SW more cheaply at each iteration
will clearly depend on the number of iterations needed to obtain the accuracy of solution required
and the ratio of d to q.

A final point to note is that at convergence, although the columns of WML will span the principal
subspace, they need not be orthogonal since

WML
TWML � RT(Λq � �2I)R� (32)

which is not diagonal for R �� I. In common with factor analysis, and indeed some other itera-
tive PCA algorithms, there exists an element of rotational ambiguity. However, if required, the
true principal axes may be determined by noting that equation (32) represents an eigenvector de-
composition of WML

TWML, where the transposed rotation matrix RT is simply the matrix whose
columns are the eigenvectors of the q� q matrix WML

TWML (and therefore also of M).


