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Many physico-chemical systems can be represented more or less accurately by a lattice arrangement of molecules with
nearest-neighbor interactions. The simplest and most popular version of this theory is the so-called "Ising model, " dis-
cussed by Krnst Ising in 1925 but suggested earlier (1920) by Wilhelm Lenz.

Major events in the subsequent history of the Lenz —Ising model are reviewed, including early approximate methods
of solution, Onsager's exact result for the two-dimensional model, the use of the mathematically equivalent "lattice gas"
model to study gas —liquid and liquid —solid phase transitions, and recent progress in determining the singularities of
thermodynamic and magnetic properties at the critical point. Not only is there a wide range of possible physical applica-
tions of the model, there is also an urgent need for the application of advanced mathematical techniques in order to
establish its exact properties, especially in the neighborhood of phase transitions where approximate methods are un-
reliable.

After many years of being scorned or ignored by most
scientists, the so-called "Ising model" has recently
enjoyed increased popularity and may, if present trends
continue, take its place as the preferred basic theory of
all cooperative phenomena. Whereas previously it
appeared that the greatly over-simplified representation
of intermolecular forces on which this model is based
would make it inapplicable to any real systems, it is
now being claimed that the essential features of co-
operative phenomena (especially at the critical point)
depend not on the details of intermolecular forces but
on the mechanism of propagation of long-range order,
and the Ising model is the only one which offers much
hope of an accurate study of this mechanism. Whether
or not it does eventually turn out that gas —liquid critical
phenomena, magnetic Curie points, order —disorder
transitions in alloys, and phase separation in liquid
mixtures can all be described, to a good first approxima-
tion, by the same model, the problem of a generalized
description of cooperative phenomena now deserves
serious attention. We are just beginning to realize
some of the implications of such a generalized descrip-
tion: specialists in the properties of gases and liquids
could not afford to ignore progress being made in
research on phase transitions in solids, and conversely.
While some scientists might not appreciate the burden
imposed by the need for keeping up with the literature
in unfamiliar fields which now suddenly appear to be
related to their own, students should benefit by the
prospective unification of different subjects. No longer
would it be necessary to learn a different theory for
each kind of cooperative phenomenon.

The historical development of the "Ising model"
also shows the same disregard for traditional boundaries
between disciplines. Physics, chemistry, metallurgy,
and mathematics have all been involved, and some of
the most recent applications have been in biology.
The most striking success in the history of the Ising
model —the exact solution of the two-dimensional
problem —involved such difficult mathematics that it
stumped all the physicists who attempted it, and was

8

finally accomplished by. . .a chemist. (Just as ironical
is the fact that the supposed inventor of the model,
Krnst Ising, gave up research in physics after thinking
he had proved that his model had no physical useful-

ness, and only discovered twenty years later that he had
become famous as a result of work on his model by
other scientists. )

THE MODEL

We assume that the physical system can be repre-
sented by a regular lattice arrangement of molecules in
space. We are interested in three kinds of physical
systems: (1) magnets, in which each molecule has a
"spin" that can be oriented either up or down relative
to the direction of an externally applied field; (2) mix-
tures of two kinds of molecules; (3) mixtures of mole-
cules and "holes" (empty spaces) . All three kinds can
be represented abstractly by the same model, if we

simply say that each node of a regular space lattice is
assigned a two-valued variable. Depending on whether
this variable has the value +1 or —1, we say that the
molecule at that node (1) has spin up or down, or (2)
belongs to one or the other of two species, (3) is present
or absent. Usually the two-valued variable is called
the spiri o., associated with node i of the lattice.

A coegggraiioe of the lattice is a particular set of
values of all the spins; if there are X nodes, there will

be 2~ different configurations. A typical configuration
is shown in Fig. 1.

We assume that the molecules exert only short-range
forces on each other; in particular, we assume that the
interaction energy depends only on the configurations
of neighboring nodes of the lattice. For example, we
could say that the forces are such that when two neigh-
boring spins are the same (both +1 or both —1) the
energy is —U, and when two neighboring spins are
different (one is +1, the other —1) the energy is +U.
In other words, the interaction tends to make neigh-
boring spins the same. In the three types of physical
systems mentioned above, such an interaction could
lead to (1) spontaneous magnetization, with all or
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LENZ AND ISING

FIG. 1. A possible configura-
tion of a Gnite square lattice.
The energy of this conngura-
tion is 8= —2U+3IJ,H.

most spins in the same direction even in the absence
of an external field, (2) phase separation, with mole-
cules of the same kind clustering together, (3) con-
densation of molecules into one region of space, leaving
empty space in the rest of the container. Whether the
interaction does in fact lead to such phenomena re-
mains to be seen, of course; one must first work out the
statistical mechanical theory of the model.

If we simply reverse the sign of U, so that the energy
is positive when two neighboring spins are the same and
negative when they are different, then the interaction
tends to produce a regular alternation of up and down
spins. Physically, this type of conGguration could cor-
respond to (1) antiferromagnetic ordering, (2) super-
lattice structure in an alloy, (3) a solid-like arrangement
of molecules with repulsive forces.

We have assumed that each nearest-neighbor pair
contributes an interaction energy which can be written
(as one easily sees) in the form —Uo.,o;, where U is
either positive or negative. In addition, we assume that
the total energy of a conGguration also includes a
term of the form @II, for each spin. The notation sug-
gests that p, is a magnetic moment and H is an external
magnetic field, and this would indeed be a reasonable
interpretation when we are applying the model to
magnetic systems. In general, pH may be any parameter
which plays the role of a "chemical potential" in
determining the average number of up and down spins,
or average composition of a mixture, or average density
of a molecule —hole system.

The mathematical problem associated with our model
is the following: Find a closed-form analytic expression
for the statistical mechanical partition function

Q= g exp (—E/frT) (sum over all configurations),
conf

where

E= QUo;o;+fr H Qa;. —
(sum over all {sum over s)

nearest-neighbor
pairs)

From the partition function one can then derive all
the thermodynamic functions of the system by the
usual procedures of statistical mechanics, and in par-
ticular one can Gnd out whether the system undergoes
a phase transition.

"In a quantum treatment certain angles n will be
distinguished, among them in any case a=0 and o.=m.
If the potential energy 8' has large values in the inter-
mediate positions, as one must assume taking account
of the crystal structure, then these positions will be
very seMom occupied, Umklapp processes will therefore
occur very rarely, and the magnet will Gnd itself almost
exclusively in the two distinguished positions, and in-
deed on the average will be in each one equally long.
In the presence of an external magnetic Geld, which
we assume to be in the direction of the null position for
the sake of simplicity, this equivalence of the two posi-
tions will disappear, and one has, according to the
Boltzmann principle, a resulting magnetic moment of
the bar magnet at temperature T:

&=II(& e ')/(e'+e ') a=fr,H/kT.

For su%.ciently small values of u, this reduces to

p =@'H/k T,

i.e., we obtain the Curie law. . . .
"For ferromagnetic bodies, in addition to the tem-

perature dependence of the susceptibility, one has to
explain Grst of all the fact of spontaneous magnetiza-
tion, as is observed in magnetite and pyrites. . . .

"If one assumes that in ferromagnetic bodies the
potential energy of an atom (elementary magnet)

~ E. Ising, Z. Physik 31, 253 (j.925).
~ W. I enz, Physik. Z. 21, 613 (1920).

Ortwein, Physik. Bla,tter 4, 30 (1948).
4 A. Sommerfeld, Z. Naturforsch. 3a, 186 (1948l.
I P. Jordan, Physik. Blatter 13, 269 (1957).
6 Professor Dr. H. Raether (private communication}.

This model is commonly referred to as the "Ising
model" although one has only to read Ising's original
paper' to learn that it was previously proposed by
Ising's research director, Wilhelm Lenz, in 1920.' lt is
rather curious that Lenz's priority has never been
recognized by later writers. Of three biographical notes
on Lenz, ' ' only one4 even mentions this paper, and
then simply summarizes it in one sentence without
mentioning its connection with the "Ising model. "Lenz
himself apparently never made any attempt later on
to claim credit for suggesting the model, and even his
colleagues at Hamburg University were not aware of
his contribution. '

Lenz suggested that dipolar atoms in a crystal may be
free to rotate around a Gxed rest position in a lattice. To
understand the physical basis of his assumptions, it
would be necessary to go into some of the forgotten
details of the old quantum theory, which we will not do
here. Instead, we will simply quote Lenz's own formula-
tion (my translation):
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with respect to its neighbors is different in the null
position and in the x position, then there arises a
natural directedness of the atom corresponding to the
crystal state, and hence a spontaneous magnetization.
The magnetic properties of ferromagnetics would then
be explained in terms of nonmagnetic forces, in agree-
ment with the viewpoint of Weiss, who has by calcula-
tion and experiment established that the internal 6eld,
which he introduced and which generally gives a good
representation of the situation, is of a nonmagnetic
nature. It is to be hoped that one can succeed in ex-
plaining the properties of ferromagnetics in the manner
indicated. "
Lenz was at Rostock University in 1920, but the fol-
lowing year he was appointed Ordinary Professor at
Hamburg. One of his first students was Ernst Ising.
Since no biographical information has ever been pub-
lished about Ising (aside from a brief entry in A meri cart
Men of Science), we shall quote here the "Lebenslauf"
from his Dissertation (my translation)r:

"I,Ernst Ising, was born on May 10, 1900, the son of
the merchant Gustav Ising and his wife The1da, at
Lowe, Koln. Shortly thereafter my parents moved to
Bochum, %estfall, where I started school in Easter
1907. I received my diploma at the Gymnasium there,
in 1918.After brief military training I began my studies
of mathematics and physics at Gottingen University in
Easter 1919.After an absence of one semester, I con-

Fzo. 3. Ernst Ising. Photograph courtesy of Professor Ising.

tinued my studies in Bonn, where I studied astronomy
among other things. Two semesters later I went to
Hamburg. There I turned especially to the study of
theoretical physics at the suggestion of Professor Dr.
W. Lenz, and at the end of 1922 I began under his

guidance the investigation of ferromagnetism, which
led to the results presented here. "

MIMI I

Fro. 2. Wilhelm Lenz (1888—1957). Photograph courtesy of
Professor Dr. H. Raether.

~ A copy of the Lebenslauf was kindly sent to me by Professor
Dr. H. Raether; the dissertation itself is hard to obtain outside
of Germany. A copy is now available at the archives of the
Center for History and Philosophy of Physics of the American
Institute of Physics in New York.

In his dissertation, surrimarized in a short paper
published in 1925,' Ising carried out an exact calcula-
tion of the partition function for the model described
above, for the special case of a one-dimensional lat-
tice. His analysis showed that there was no phase tran-
sition to a ferromagnetic ordered state at any tem-
perature. This result can be understood by a qualitative
argument: suppose one had an ordered state in which,

say, all the spins were up. Then if any random thermal
fluctuation should cause spins in the middle of the lattice
to Qip to the down position, the ordering would be
destroyed, because there would be nothing to prevent
all the spins on one side from Gipping simultaneously. .
In other words, the ordered state is unstable at any
finite temperature, because the "communication" be-
tween any two parts of the lattice can be broken by a
single defect. However, Ising did not realize that this
argument is valid only in one dimension, and he gave
some approximate calculations purporting to shower that
his model could not exhibit a phase transition in three
dimensions either.

According to a letter from Ising to the author:

"At the time I wrote my doctor thesis Stern and
Gerlach were vrorking in the same institute on their
famous experiment on space quantization. The ideas
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we had at that time were that atoms or molecules of
magnets had magnetic dipoles and that these di-
poles had a limited number of orientations. We as-
sumed that the field of these dipoles would die down
fast enough so that only interactions should be taken
into account, at least in the first order. . . . I discussed
the result of my paper widely with Professor Lenz
and with Dr. Wolfgang Pauli, who at that time was
teaching in Hamburg. There was some disappointment
that the linear model did not show the expected ferro-
magnetic properties. . . . I do not know of any reaction
to my paper while I was in Europe, except that Heisen-
berg mentioned it in one of his publications. Only after
I had come to this country $U.S.A.$ in 1947 did I
learn that the idea had been expanded. I have tried to
extend my model to more complicated forms, but have
not published anything yet.

"After I got my doctor's degree I worked in the re-
search department of the Allgemeine Elektrizitats-
Gesellschaft (General Electric Company) in Berlin.
I was not satisfied, returned to the University and be-
came a teacher. When Hitler came to power in 1933
I was dismissed from public schools, and for four years
I was the head of a private Jewish school near Potsdam.
I left Germany in 1939, but was not able to come to
the U.S.A. immediately. We survived the war in a small
town in Luxembourg, but I was there completely shut
oB from scientific and social life. After coming to the
U.S.A. I taught for one year at the State Teachers
College in Minot, N.D., and since 1948 I have been
teaching physics at Bradley University t Peoria,
Illinois]. "

Ising remarks that the only contemporary citation
of his paper was by Heisenberg. Heisenberg, when he
proposed his own theory of ferromagnetism in 1928,'
said:

"Ising succeeded in showing that also the assumption
of directed sufficiently great forces between two neigh-
boring atoms of a chain is not su%cient to explain ferro-
magnetism. "

Thus Heisenberg used the supposed failure of the Lenz-
Ising model to explain ferromagnetism as one justifi-
cation for developing his own theory based on a more
complicated interaction between spins. In this way the
natural order of development of theories of ferromagne-
tism was inverted; the more sophisticated Heisenberg
'Inodel was exploited first, and only later did theo-
reticians return to investigate the properties of the
simpler Lenz —Ising model.

W. Heisenberg, Z. Physik 49, 619 (1928). Ising's result is
also cited by L. Nordheim in the article "Quantentheorie des
Magnetismus" in Mueller-Pouillet's I.ehrblch der I'kysik (Fred-
erick Vieweg und Sohn, Braunschwieg, Germany, 1934), 11th ed. ,
Vol. IV, Teil 4, p. 859. (1 am indebted to Professor Ising for
this reference. )

Indeed, as a result of Ising's own rejection of the
model, we might never have heard any more about it,
if it had not been for developments in a diferent area
of physics: order —disorder transformations in alloys.
Tamman had proposed in 1919 that the atoms in alloys

may be in a definite ordered arrangement, and a num-

ber of workers had developed the idea that order—
disorder transformations result from the opposing
effects of temperature and the lower potential energy
of order. ' In 1928, Gorsky tried to construct a statistical
theory on this basis by assuming that the work needed

to move an atom from an "ordered" position to a
"disordered" position is proportional to the degree of
order already existing. "Bragg and Williams developed
Gorsky's theory further in 1934, and the assumption has
subsequently become known as the "Bragg—Williams

approximation. '"' It differs from the Lenz —Ising model
in that the energy of each configuration of an individual
atom is assumed to depend only on the average degree
of order throughout the entire system, rather than on

the configurations of neighboring atoms.
In 1935, Hans Bethe showed how the Bragg —Williams

theory could be improved by taking account of the
short-range ordering produced by interactions between
neighboring atoms. " He did this by constructing an

approximate combinatorial factor based on configura-
tions of the first shell of lattice sites around a central
one. In the same year, E. A. Guggenheiin. developed a
theory of liquid solutions in which nearest-neighbor
interactions were taken into account by what is known
as the "quasi-chemical" (QC) method. " In the QC
method one constructs an approximate combinatorial
factor by counting configurations of neighboring pairs
or larger groups of atoms, assuming that these groups
can be treated as independent statistical entities. (This
is of course not strictly true since each atom belongs to
several groups, so that the configurations of these

groups cannot really be independent. ) The QC method
was improved and extended by Rushbrooke" by means
of Bethe's method. Guggenheim" then showed that the

z G. Tammann, Z. Anorg. Chem. 107z 1 (1919):,U. Dehnnger,
gontgenforsckzzng zn der Metallkzznde (Julius Springer-Verlag,
Berlin, 1930};Z. Physik 74, 267 {1932);79, 550 (1932);83, 832
(1933); Z. Physik. Chem. 326, 343 (1934); G. Borelius, Ann.
Physik 20, 57 (1934).I W. Gorsky, Z. Physik 50, 64 (1928)."W. L. Bragg and E. J. Williams, Proc. Roy. Soc. (London)
A145, 699 (1934); A151, 540 (1935);E. J. Williams, Proc. Roy.
Soc. (London) A152, 231 (1935). Bragg and Williams acknowl-
edged the priority of Gorsky but claimed that he had made an
error in his formulation; but according to R. H. Fowler and E. A.
Guggenheim )Statzstzca/ T/zernzodynarnzcs (Cambridge University
Press, Cambrrdge, England, 1939), p. 574j, Gorsky's formula
is equivalent to that of Bragg and Williams. (l am indebted to
Professor Guggenheim for pointing this out to me. )

"H. A. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935).
"E. A. Guggenheim, Proc. Roy. Soc. (London) A148, 304

(1935).
'4 G. S. Rushbrooke, Proc. Roy. Soc. (London) A1M, 296

(1938).
'~ E. A. Guggenheim, Proc. Roy. Soc. (London) A169, 134

(1938).
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QC method is really equivalent to the Bethe method,
and more convenient to use in many cases such as those
involving complicated lattices. In 1940, Fowler and
Guggenheim' published a general formulation of the
QC method and applied it to alloys with long-range
order. '~

ATTEMPTS TO FIND AN EXACT SOLUTION

The concept of the "Ising model" as a mathematical
object existing independently of any particular physical
approximation seems to have been developed by the
Cambridge group led by R. H. Fowler in the 1930's.
Fowler discussed rotations of molecules in solids in a
paper published in 1935,' where he stated that the
need for a quantitative theory of such phenomena

".. . was 6rst brought clearly to my notice at a con-
ference on the solid state held at Leningrad in 1932.
As will appear, however, an essential feature of the
theory is an application of the ideas of order and dis-
order in metallic alloys, where the ordered state is
typically cooperative, recently put forward by Bragg
and Williams. As soon as their ideas are incorporated
the theory 'goes'. "

In 1936, R. Peierls published a paper with the title
"On Ising's Model of Ferromagnetism '" in which he
recognized the equivalence of the Ising theory of
ferromagnetism, the Bethe theory of order —disorder
transformations in alloys, and the work of Fowler and
Peierls" on adsorption isotherms. Peierls gave a simple
argument purporting to show that (contrary to Ising's
statement) the Lenz —Ising model in two or three di-
mensions does exhibit spontaneous magnetization at
sufficiently low temperatures. He pointed out that each
possible configuration of (+) and ( —) spins on the
lattice corresponds to a set of "boundaries" between
regions of (+) spins and regions of ( —) spins. If one
can show that, at sufficiently low temperatures, the
average (+) area or volume enclosed by boundaries is

only a small fraction of the total area or volume, then
it will follow that the majority of spins must be ( —),
which corresponds to a system with net magnetization.
Unfortunately Peierls' proof is not rigorous because of
an incorrect step, which was discovered by M. E.
Fisher and S. Sherman. " The basic idea is still of
interest —the analysis of boundaries between magne-
tized regions plays an important role in some of the
more recent combinatorial methods.

6R. H. Fowler and E. A. Guggenheim, Proc. Roy. Soc. (Lon-
don) Ale, 189 (1940).

' See also: E. A. Guggenheim, Mixtures (Clarendon Press,
Oxford, England, 1952); J. A. Barker, Proc. Roy. Soc. (London)
A216, 45 (1953); S. G. Brush, Trans. Faraday Soc. 54f 1781.
(1958). (Extension of QC method to higher approximations. )' R. H. Fowler, Proc. Roy. Soc. (London) A149, 1 (1935).

' R. Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936).
R. Peierls, Proc. Cambridge Phil. Soc. 32, 471 (1936)."S. Sherman (private communication); see R. B. Gri%ths,

Phys. Rev. 136, A437 (1964) .

The next advance was made by J. G. Kirkwood, who

developed in 1938 a systematic method for expanding
the partition function in inverse powers of the tem-
perature. "His method was based on the semi-invariant
expansion of T. N. Thiele (1838—1910), used in sta-
tistics to characterize a distribution function by its
moments. "Since only a small number of terms in the
expansion could actually be computed, the result was
"essentially equivalent to Bethe's in its degree of
approximation, but somewhat less unwieldy in form. "
In 1939 Bethe and Kirkwood, then both at Cornell,
published a joint paper giving a comparison of their
methods, and including a calculation of the next term
in Kirkwood's expansion. '4 Chang (1941) evaluated two
more terms, and Wakefield (1951) determined three
Inore."The present status of this expansion, and its
use in determining the critical point, is reviewed in

survey papers by Bomb and Fisher."
The first exact quantitative result for the two-dimen-

sional Ising model was obtained by Kramers and
Wannier in 1941";they located the transition tempera-
ture by using the symmetry of the lattice to relate the
high- and low-temperature expansion of the partition
function. They showed that the partition function can
be written as the largest eigenvalue of a certain matrix;
they attribute some of the ideas used in their analysis to
Montr oil, who subsequently published a similar
method. '8 Kramers and Wannier developed a method
that yields the largest eigenvalue of a sequence of
finite matrices and should in principle converge to the
exact solution if su%ciently large matrices could be
analyzed. They did not succeed in obtaining an exact
solution in closed form, but they did develop a varia-
tional method which is fairly accurate, and which has
been used occasionally in later studies. "

Some other exact but incomplete results were ob-
tained by other workers at about the same time.
Zernike'0 had used the Bethe method to derive a non-
linear finite difference equation for the "correlation
function" (correlation of spin variables at various dis-

s' J. G. Kirkwood, J. Chem. Phys. 6, 70 (1938).
"See, for example, M. G. Kendall, Advanced Theory of Sta-

tistics (GrifBn, London, 1947), 3rd ed. , Vol. I, Chap. 3. Kendall
prefers to call these quantities "cumulants" but the name "semi-
invariant" has survived in statistical mechanics. The history of
semi-invariants is discussed briefly by H. M. Walker in Studies
in the History of Statistical Method (The Williams and Wilkins Co.,
Baltimore, 1929), p. 81.

~4H. A. Bethe and J. G. Kirkwood, J. Chem. Phys. '7, 578
(1939)~"T.S. Chang, J. Chem. Phys. 9, 169 (1941);A. J. Wake6eld,
Proc. Cambridge Phil. Soc. 4'7, 419, 799 (1951)."C. Domb, Advan. Phys. 9, 150 (1960);M. E. Fisher, J. Math.
Phys. 4, 278 (1963): Lectures in Theoretical I'hysics (University
of Colorado Press, Boulder, Colo. , 1965), Vol. VIIC, p. 1.

"H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252, 263
(1941)."E. Montroll, J. Chem. Phys. 9, 706 (1941);10, 61 (1942) .

2'D. ter Haar and B. Martin, Phys. Rev. '7'7, 721 (1950);
B. Martin and D. ter Haar, Physica 18, 569 (1952); T. Oguchi,
Phys. Rev. '76, 1001 (1949); J. Phys. Soc. Japan 5, 75 (1950).

30 F. Zernike, Physica 7', 565 (1940).
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tances), Ashkin and Lamb" derived an exact low-tem-
perature series for the correlation function of the two-
dimensional lattice using the Kramers —Wannier
method. They compared the results of Zernike's ap-
proximation with their own method, and with van der
Waerden's exact series expansion" for a three-di-
mensional lattice. They also proved that the existence
of long-range order implies degeneracy of the largest
eigenvalue of the Kramers —Wannier matrix, as pre-
viously remarked by Lassettre and Howe. "Ashkin and
Teller'4 located the transition temperature in four-
component two-dimensional systems by symmetry
methods.

A contribution by R. Kubo" deserves especial men-
tion because it was published only in Japanese and was
therefore unknown to Western physicists. (An English
translation is now available. ) Kubo developed the
matrix formulation and showed how a possible phase
transition in the &wo- or three-dimensional system
would be related to the degeneracy of the largest eigen-
value of a matrix, but he did not give detailed calcula-
tions except for the one-dimensional case.

ONSAGER'S EXACT SOLUTION

At a meeting of the New York Academy of Science,
28 February 1942, Lars Onsager announced his solution
of the two-dimensional Lenz —Ising problem in zero
magnetic field."The details were published two years
later. "The method is similar to that of Kramers and
Wannier, and of Montroll, except that Onsager em-

phasized "the abstract. properties of relatively simple
operators rather than their explicit representation by
unwieldy matrices. " We quote Onsager's summary of
his method:

"The special properties of the operators involved
in this problem allow their expansion as linear com-
binations of the generating basis elements of an algebra
which can be decomposed into direct products of qua-
ternion algebras. The representation of the operators in
question can be reduced accordingly to a sum of direct
products of two-dimensional representations, and the
roots of the secular equation for the problem in hand
are obtained as products of the roots of certain quad-
ratic equations. To find all the roots requires complete
reduction, which is best performed by the explicit
construction of a transforming matrix, with valuable

3' J. Ashkin and W. E. Lamb, Jr., Phys. Rev. 64, 159 (1943).
'2 B.L. van der Waerden, Z. Physik 118, 473 (1941).
33E. N. Lassettre and J. P. Howe, J. Chem. Phys. 9, 747

(1941).
'4 J. Ashkin and E. Teller, Phys. Rev. 54, 178 (1943); see

also R. S. Potts, Proc. Cambridge Phil. Soc. 48, 106 (1952).
sb R. Kubo, Busseiron-kenkyu 1, 1 (1943) /English transl. :

UCRL-Trans. 1030(L), available from Lawrence Radiation
Laboratory, Livermore, Californiaj.

36 See T. Shedlovsky and E. Montroll, J. Math. Phys. 4, 145
(1963).

~ L. Onsager, Phys. Rev. 05, 117 (1944).

by-products of identities useful for the computation of
averages pertaining to the crystal. It so happens that
the representations of maximal dimension, which con-
tain the two largest roots, are identified with ease
from simple general properties of the operators and
their representative matrices. The largest roots whose
eigenvectors satisfy certain special conditions can
be found by a moderate elaboration of the procedure;
these results will sufIice for a qualitative investigation
of the spectrum. To determine the thermodynamic
properties of the model it su%ces to compute the largest
root of the secular equation as a function of tempera-
ture.

"The passage to the limiting case of an infinite base
involves merely the substitution of integrals for sums.
The integrals are simplified by elliptic substitutions,
whereby the symmetrical parameter of Kramers and
Wannier appears in the modulus of the elliptic func-
tions. The modulus equals unity at the 'Curie point'; the
consequent logarithmic infinity of the specific heat
confirms a conjecture made by Kramers and Wannier. "

Onsager's method was subsequently simplified by
Kaufman" and by Newell and Montroll, ' using ideas
from the theory of spinors and Lie algebras. A good ex-
position of the method is given in the review by Newell
and Montrolp'; shorter summaries appear elsewhere. '
The result is that the partition function for a rec-
tangular lattice of nrem points can be written in the
form

log Q
lim = log 2+ (1/2sr') dec dkr

a,marco 0 0

&&log (cosh 2J cosh 21'' —sinh 2X cos cc

—sinh 2E' cos ce),

where E=U/kT, IV= U'/kT (there can be different
interaction energies U and U' in horizontal and vertical
directions) .

Onsager's formula for the spontaneous magnetization
of the square lattice was

".. . first exposed to the public on 23 August 1948 on a
blackboard at Cornell University on the occasion of a
conference on phase transitions, . ..To tease a wider
audience, the formula was again exhibited during the
discussion which followed a paper by Rushbrooke at the
first postwar IUPAP statistical mechanics meeting in
Florence in 1948; it finally appeared in print as a dis-

3' B.Kaufman, Phys. Rev. V6, 1232 {1949).
39 G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 353

(1933).
4e C. Dornb, Advan. Phys. 9, 13O (1960); D. ter Haar, Ele-

ments of Statsstscet Mechasttcs (Rinehart and Co. , New York,
1954); K. Huang, Stctistica/ Mechanics (John Wiley 8z Sons,
Inc. , New York, 1963); H. S. Green and C. A. Hurst, Order-
Disorder I'henomeea (Interscience Pub/ishers, Inc. , New York,
1964).
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cussion remark. However, Onsager never published
his derivation. The puzzle was 6nally solved by C. N.
Yang. 4"'

The exact partition functions and other properties
of several other two-dimensional lattices have been
deduced from the Onsager result by various workers.
In a few cases it has been possible to obtain information
about behavior in a magnetic 6eld for models somewhat
similar to the Ising model by transforming the variables
in Onsager's partition function. 4' However, although
Onsager's method has been applied to some closely
related problems, no further really new results have been
obtained with it. All the two-dimensional lattices appear
to have qualitatively similar properties, at least for
the case of nearest-neighbor ferromagnetic interactions.
The problem of calculating the exact partition func-
tion in a 6nite magnetic 6eld remains unsolved, though
significant results for the spontaneous magnetization
and susceptibility in a vanishingly small 6eld have been
obtained. And, 25 years after the announcement of
Onsager's original result, no one has yet succeeded in
solving the problem in three dimensions. Probably this
is because the abstract algebraic approach of Onsager
and Kaufman involves techniques that are as yet too
dificult and unfamiliar to most of the physicists who
have been interested in the Lenz —Ising model; and the
mathematicians who are competent in this area have
not shown much interest in physical applications.
This is regrettable even from the point of view of the
progress of pure mathematics, for research stimulated
by the Lenz —Ising model has revealed a relationship
between two separate areas of mathematics whose
significance is apparently not yet understood by mathe-
maticians themselves (see below) .

In an attempt to provide a heuristic explanation of
Onsager's result, Kac and Ward4s constructed a matrix
whose determinant provided a generating function for a
certain combinatorial problem related to the Lenz-
Ising model partition function. Van der Waerden32 had
shown how the Lenz —Ising problem could be reduced to
the problem of counting the number of lattice graphs
containing closed polygons with various total perime-
ters. These polygons may be thought of as boundaries
between regions of (+) and ( —) spins, as suggested by
Peierls, " but van der Waerden and Kac and Ward
investigated the approach more systematically. The
validity of the Kac—Ward method depends on the as-
sumption that their determinant is the correct gen-
erating function for st(1.), defined as the number of
graphs of L bonds that can be constructed on the lattice

4~ E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys.
4, 308 (1963); L. Onsager, Nuovo Cimento (Suppl. ) 6, 261
(1949); C. N. Yang, Phys. Rev. 85, 809 (1952); C. H. Chang,
ibid. 88, 1422 {1952).

n M. E. Fisher, Phys. Rev. 113, 969 (1959); Proc. Roy. Soc.
(London) A254, 66 (1960);A256, 502 (1960).'" M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952) .

subject to certain conditions. Since "most" graphs (in
some asymptotic sense) are indeed counted correctly,
and since the determinant does reduce to just the same
function that occurs in the integrand of the Onsager
partition function, it was tempting to conclude that
the method could be made rigorous. It turned out,
however, that some graphs are not counted correctly
(see the counterexample given by Sherman44) and that a
somewhat diferent though closely related method is
required. The clue to the correct approach was found by
Feynman, 4' who conjectured a relation between func-
tions of graphs and of closed paths (random walks) on a
lattice. If one accepts the validity of Feyrunan's rela-
tion, he can then make use of methods previously
developed" to count random walks on a lattice, and
thereby get to the Onsager partition function by a route
somewhat analogous to that suggested by Kac and
Ward. '7 The dificult part is to prove the Feynrnan
relation between graphs and paths. This was 6rst done
by Sherman44 and a simpli6ed proof was devised by
Burgoyne. 48 The proof uses a result on crossings of
curves in a plane, originally derived by Whitney. "

What began as an attempt to provide a more com-
prehensive derivation of a known result has turned up
some unsuspected insights and conjectures regarding
the borderline of modern algebra and combinatorial
analysis. This is why mathematicians should pay more
attention to the Lenz —Ising model, though it is im-
possible to give any more than a brief hint here of some
of the technical aspects involved. Here is a morsel for
the experts to chew on: Sherman" remarks that he was
informed by M. P. Schutzenberger that his (Sherman's)
combinatorial theorem, of which Feynman's con-
jecture is a special case, involves an identity used to
establish a formula of W. E. Witt" on "the dimension
of the linear space of Lie elements of degree r in a free
Lie algebra with k generators over a Geld of charac-
teristic zero."Sherman's theorem is a generalization of
Witt's identity "to any planar 1-cycle with sufhcient
smoothness so that winding numbers can be de6ned.
It constitutes a relation between the fundamental group
and the 6rst homology group over the integers mod 2
of this planar 1-cycle. An analogous relation between
the two groups for 1-cycles in 3-space might very well
crack the long attacked Ising problem.

" Sherman
mentions some other mathematical problems whose

44 S. Sherman, J. Math. Phys. 1, 202 {1960).
45 Unpublished. An account is given by Harary in the draft of

a chapter of his book on graph theory, dated 1958 but not yet
published. See also Feynman's lecture notes, Hughes Research
Laboratory, Malibu, California (1960).

"See, for example, H. N. V. Temperley, Phys. Rev. 103, 1
(1956).

4'Harary, Ref. 45; Sherman, Ref. 44; N. Burgoyne, J. Math.
Phys. 4, 1230 (1963).~ N. Burgoyne, Ref. 47'.

"H. Whitney, Compos. Math. 4, 276 (1937).~ S. Sherman, Bull. Am. Math. Soc. 68, 225 (1962).
+ W. E. Witt, J. Reine Angew. Math. 177, 152 (1937).
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solution might be of use in tackling the three-dimen-
sional problem.

Domb's address to the Royal Statistical Society of
London in 1964 stimulated an interesting discussion on
the relations between professional -statisticians and
theoretical physicists, apropos of "Some statistical
problems connected with crystal lattices. ""Among other
pertinent remarks was the following by Professor H. E.
Daniels: "whereas nowadays nearly every dificult
problem in applied mathematics can be adequately
solved on a computer, the three-dimensional Ising
lattice problem must be one of the rare examples where
ultimately only a complete mathematical solution will
really do." But if mathematicians are to participate
effectively in solving problems in theoretical physics,
some psychological or at least linguistic barriers must
be broken down (the varying usages of the term
"ergodic" in physics and mathematics is a good
example from a neighboring 6eld of statistical me-
chanics) .

Specialists in quantum 6eld theory should also be in-
terested in the Lenz —Ising model, in view of the mathe-
Inatical similarities between these two topics." One
particular approach, proposed by Hurst and Green, "
uses 6eld theory techniques to arrive at expressions
similar to those that occur in the Kac—Ward method.
Each lattice point in a graph in the expansion of the
partition function is associated with a set of noncom-
muting operators, chosen in such a way that a product of
certain combinations of these operators, when ex-
panded as a sum over lattice graphs, will be identically
equal to the partition function. This is sometimes known
as the "Pfaffian" method; it involves triangular arrays
of quantities related to antisymmetrical determinants. "
Fisher, " Temperley and Fisher, ' and Kasteleyn"
applied the PfaKan method to the problem of the
configurations of dimer molecules on a lattice, and
Kasteleyn" showed the connection between the dimer
problem and the Ising model. The theory of Toeplitz
matrices turned out to be useful in much of this re-

's C. Domh, J. Roy. Stat. Soc., Ser. B26, 367 (1964) with
discussion remarks by J. M. Hammersley, H. E. Daniels, D. C.
Handscomb, J. F. C. Kingman, D. J. A. Welsh, and E. S. Page.

~ Y. Nambu, Progr. Theoret. Phys. (Kyoto) 5, 1 (1950);
R. L. Ingraham, Nuovo Cimento 21, 29 (1961);T. D. Schultz,
D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964);
R. Abe, Progr. Theoret. Phys. 33, 600 (1965).~ C. A. Hurst and H. S. Green, J. Chem. Phys. 33, 1059 (1960);
A. M. Dykhne and Y. B. Rumer, Vsp. Fiz. Nauk 75, 101 (1961)
/English transL: Soviet Phys. Usp. 4, 698 (1962)g; C. A. Hurst,
J. Chem. Phys. 38, 2558 (1963);H. S. Green, Z. Physik 171, 129
(1962); E. W. Montroll, in A pp/ied Combinatorial 3fathematics,
K. F. Beckenbach, Ed. (John Wiley 8z Sons, Inc. , New York,
1964); H. S. Green and C. A. Hurst, Order-Disorder Phenomena
(Interscience Publishers, Inc. , New York, 1964).

"See, for example, G. Brunel, Mem. Soc. Sci. Bordeaux 5, 165
(1895); W. T. Tutte, J. London Math. Soc. 22, 107 (1947)."M. E. Fisher„Phys. Rev. 124, 1664 (1961).

5'H. N. V. Temperley and M. E. Fisher, Phil. Mag. 6, 1061
(1961).

ss P. W. Kasteleyn, Physica 27, 1209 (1961).
~9 P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963).

search, and has since found applications in other areas
of statistical mechanics. "

THE LATTICE GAS

Though it had been recognized earlier" that formulas
derived for the Lenz —Ising model could apply equally
well to systems of atoms and holes in a lattice, it was
Lee and Yang who 6rst used the term "lattice gas" in a
published paper. " For this reason, and because they
did give a systematic account of the transcription of
variables and formulas, as well as deriving some new
results, their paper is usually cited as the origin of
work. on the lattice gas.

Whereas the set of all possible spin values of 2V lattice
sites corresponds to a canonical ensemble for a magnet,
it corresponds to a grand canonical ensemble for a
lattice gas. The total volume is fixed but the total
number of atoms can vary. To calculate the partition
function one sums over all possible values of the number
of atoms, from zero up to the total number of lattice
sites. Thus the magnetization of the magnet (difference
between number of up and down spins) is directly
related to the density of the lattice gas (fraction of
occupied sites). The role of the external magnetic
6eld, which is a controllable parameter for the magnetic
model, is now played by the fugacity for the lattice gas.
The case of zero external field —the only one that can
be treated exactly by Onsager's method —now cor-
responds to the case in which half of the lattice sites
are filled on the average. Below the transition tem-
perature the system may split into two phases of
different densities; these correspond to the two possible
states of spontaneous magnetization of a magnet in
zero field (whether the magnetization is +M or —M
depends on the direction of the 6eld before it was
turned off).

The lattice gas model with attractive forces between
neighboring atoms has frequently been studied as a
possible model for the liquid —gas transition and the
critical point (see below). However, if the interaction
is repulsive, so that con6gurations with alternating
filled and vacant sites are favored, one has a model
which is of interest in connection with the theory of
solidi6cation. Such a model involving only repulsive
forces was suggested by the results of computer ex-
periments on systems of a few hundred hard spheres.
These experiments showed that, at least for finite
systems, repulsive forces can produce an ordered phase
at high densities which is reached by a first-order phase
transition from the disordered phase at medium and

6O E. W. Montroll, R. B.Potts, and J. C. Ward, J. Math. Phys.
4, 308 (1963);A. Lenard, J. Math. Phys. 5, 930 (1964).

O' Y. Muto, J. Chem. Phys. 16, 519, 524, 1176 (1948); S. Ono,
Mem. Fac. Eng. Kyushu Univ. 10, {No. 4), 196 {1947);T.
Tanaka, H. Katsumori, and S. Toshima, Progr. Theoret. Phys.
(Kyoto) 6, 17 (1951)."T.D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).
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low densities. " Temperley and others have therefore
pursued the study of antiferromagnetic versions of the
Lenz —Ising model in the hope of learning more about
the liquid —solid transition. '4

represented by those expansions. "His results for the
high-temperature susceptibility confirmed the estimates
of Domb and Sykes": for temperatures near the critical
temperature T„the susceptibility behaves as

THE CRITICAL POINT

Until recently, the lack of an exact solution for the
three-dimensional Lenz —Ising model had thwarted
attempts to reach definite conclusions about the nature
of the phase transition. Many approximate methods had
been developed, but comparison of their predictions
with Onsager's exact two-dimensional solution showed
that the approximations generally failed to reproduce
the nature of the singularity in the specific heat and
other thermodynamic functions at the transition point.
It seemed that nothing short of an exact solution could
o6er any convincing evidence about the singularity in
three dimensions.

During the early 1960's, Domb and his colleagues at
London had been continuing the earlier work" '4" of
computing further terms in the series expansions of
the partition functions and thermodynamic properties.
These expansions are either in positive or negative
powers of the temperature, starting from zero or in-
finite temperature, respectively. Although the ex-
pansions were not expected to give reliable values in
the neighborhood of the transition point, it was thought
possible to estimate the location of the critical point by
various extrapolation methods. "" Then, in 1961,
Baker introduced the method of Pade approximants"
for extrapolating series expansions and estimating the
location and nature of singularities of the functions

63 B. J. Alder and T. E. Wainwright, J. Chem. Phys. 2V', 1208
(1957); the possibility oi such a transition had previously been
suggested by J. G. Kirkwood and E. Monroe, J. Chem. Phys. 10,
394 (1942) and by I. Z. Fisher, Zh. Eksperim. i Teor. Fis. 28,
437 (1955) LEnglish transl. : Soviet Phys. —JETP 1, 273 (1955)].
For reasons why there should not be a phase transition, see J. E.
Mayer, Phys. Today 11, 22 (January 1958).

6'H. N. V. Temperley, Proc. Phys. Soc. London '74, 183, 432,
""." (1959);84, 339 (1964); 86, 180 (1965). For earlier work on
the antiferromagnetic model, see J. E. Brooks and C. Domb,
A20'7, 343 (1951);Y. Y. Li, Phys. Rev. 84, 721 (1951);J. M.
Ziman, Proc. Phys. Soc. (London) 64, 1108 (1951);other recent
work: M. F. Sykes and M. E. Fisher, Phys. Rev. Letters 1, 321
(1959);Physica 28, 919 (1962); M. E. Fisher and M. F. Sykes,
Physica 28, 939 (1962);D. M. Burley, Proc. Phys. Soc. (London}
75, 262 (1960); 7/, 451 (1961); Physica 2'7, 768 (1961); C.
Domb, Nuovo Cimento Suppl. 9, 1 (1958);B.Jancovici, Physica
31, 1017 (1965); D. S. Gaunt and M. E. Fisher, J. Chem. Phys.
43, 2840 (1965); L. K. Runnels, Phys. Rev. Letters 15, 581
(1965).

~ C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961);Proc.
Roy. Soc. (London) A240, 214 (1957); M. E. Fisher and M. F.
Sykes, Physica 28, 939 (1962); M. F. Sykes, J. W. Essam, and
D. S. Gaunt, J. Math. Phys. 6, 283 (1965).There has also been
some work on series expansions for models in nonzero magnetic
fields: C. Domb, Proc. Roy. Soc. (London) A196, 36 (1949);
A199, 199 (1949) and later papers.

66H. Pads, Ann. Sci. Ecole Normale Superieure (Paris) 9,
Suppl. 1-92 (1892); G. A. Baker, Jr., J. L. Gammel, and J. G.
Wills, J. Math. Anal. Appl. 2, 405 (1961); G. A. Baker, Jr., in
Advances in Theoretica/ Physics, K. A. Brueckner, Ed. (Academic
Press Inc. , New York, 1965).

where y=~& in two dimensions, and =~~ in three di-
mensions. Baker also showed that the Pade approxirnant
method could be applied successfully to low-tem-
perature series, which previous methods had failed to
handle. For example, Baker's calculations suggested
that the spontaneous magnetization goes to zero at the
transition temperature in such a way that

Ip( T)~D/1 —( T/To) 1S~

where P =0.30&0.01 for three-dimensional lattices.
It was already known4t that P= s in two dimensions.

The Pade approximant method was quickly taken up
by the London group and elsewhere; the possibility of
obtaining significant and reliable results for the critical
point of three-dimensional systems provided a strong
motivation for grinding out more terms in the series
expansions. 's The results have been summarized in
papers by Fisher. "

This recent progress in determining the critical-point
behavior of the Lenz —Ising model has revealed that the
model may have much greater applicability to real
physical systems than was previously thought. Fisher~'
pointed out that according to Van der Waals theory of
the liquid —gas transition, the difference between liquid
and gas phase densities should go to zero as the square
root of the diGerence between temperature and critical
temperature, as the critical point is approached from
below:

pl, —pg~A (T, T) '~' as T~T,—

The compressibility along the critical isochore should
behave as

The specific heat at constant volume along the critical
isochore should rise to a maximum and then fall dis-
continuously as T increases through T, :

with

The compressibility of the gas and the liquid along the
coexistence curve should also diverge as simple poles.

6 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961).
6' J. W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802

(1963); A. V. Ferris-Prabhu, Phys. Letters 15, 127 (1965).
69 M. E. Fisher, J. Math. Phys. 4, 278 (1963).
re M. E. Fisher, J. Math. Phys. 5, 944 (1964); Lectlres je

Theoretica/ Physics (University of Colorado Press, Boulder,
Colo., 1965),Vol. VIIC, p. 1;see also C. N. Yang and C. P. Yang,
Phys. Rev. Letters 13, 303 (1964).
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These predictions are also made by most other ap-
proximate theories, and in fact they are "essentially a
direct consequence of the implicit or explicit assumption
that the free energy and the pressure can be expanded
in a Taylor series in density and temperature at the
critical point. "

Experimental results on gas—1'quid systems near the
critical point are definitely in disagreement with the
predictions of the van der Waals theory, however.
According to older data, as analyzed by Guggenheim in
1945,7' the exponent is about 3 cather than —,'. More
recent experiments also show that the exponent
(usually denoted by P, corresponding to the exponent
for spontaneous magnetization) is between 0.33 and
0.36 for most systems. Thus the experimental co-
existence curve is much Ratter than the van der Waals
curve. On the other hand, the three-dimensional
lattice gas model leads to a value of p between 0.303
and 0.318, possibly just T6 =0.3125. While this is some-
what outside the range for real systems, it is certainly
much closer than the van der Waals theory, and creates
the presumption that the lattice gas provides an ex-
tremely good first approximation for the behavior of
fluids at the critical point.

It will be observed, incidentally, that theoreticians
have a strong prejudice towards finding simple fractions
for these exponents, whatever may be the raw data.
This is probably justi6ed by the results of the two-
dimensional exact calculations, but as J. F. C. Kingman
has pointed out, "there must have been a time when
considerable plausibility attached to the conjecture

For the singularity in the compressibility (cor-
responding to the susceptibility for a magnetic system),
the exponent y mentioned above was thought for some
time to have the theoretical value 4. , but expert opinion
has recently tended toward the value ~~."Experimen-
tal data, according to Fisher, ~' lead to a value somewhat
larger than 1.1, though there is not sufhcient evidence
for a precise estimate. Furthermore, most of the evi-
dence is relevant only below the critical temperature,
and. 7 may have a different value (y') above the critical
temperature. Nevertheless, it seems likely that the
lattice —gas value is better than the van der Waals value.

The nature of the specific heat singularity has not
been settled. Fisher assumes a relation of the form

where A and 8 are constants that may have different
values above and below T„there may also be a different
exponent above (n) and below (n'). For the two-
dimensional lattice gas, we know that rr=O (repre-
senting, in this formula, a logarithmic singularity).

"E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).» M. E. Fisher (private communication).

For the three-dimensional lattice gas, 0. is positive but
less than 0.2; the best guess at present" is o.'=~~.

At this point there is an opportunity for the use of
thermodynamic, as opposed to statistical mechanical
reasoning, in deducing relations among the three ex-
ponents. Kssam and Fisher, "on the basis of "heuristic
arguments related to the Frenkel-Bijl —Band. picture
of condensation, " conjectured the relation

rr'+2P+v'= 2

This is valid in the two-dimensional Lenz —Ising model,
where n =0, P = s, and y =@.Rushbrookers showed that
the relation is valid as an inequality,

rr'+2P+y'& 2

for ferromagnets, and Fisher appplied the same reason-
ing to Quids. GrifIiths74 derived this and several similar
inequalities by thermodynamic arguments. Widom,
Kadanoff, and others have recently investigated general,
equations of state for lattice gases and ferromagnets in
nonzero magnetic field, in order to discover what
properties a system must have in order to be con-
sistent with information now available about the
critical point behavior. " A new pattern of relations
between critical indices now seems to be emerging from
this research, but it would perhaps be premature to
report here on the tentative conclusions that have been
reached. ~'

For magnets, the Heisenberg model is generally con-
sidered to be more accurate than the Lenz —Ising model.
Attempts have been made to apply the Pade approxi-
mant method to exact series expansions for the Heisen-
berg model, but the calculations appear to be more
diKcult and the conclusions less certain. It was thought
for awhile that the exact value of y for the Heisenberg
model may be ~, which would agree very well with some
of the experimental results though not all of them. 7 For
example, Kouvel and Fisher analyzed the old data of
Weiss and Forrer (1926) and concluded that y=
1.35&0.02 for nickel. 7' But more recent theoretical
work suggests a value of about 1.42 for y.7'

73 G. S. Rushbrooke, J. Chem. Phys. 39, 842 (1963).
r' R. B. Griiiiths, Phys. Rev. Letters 14, 623 (1965);J. Chem.

Phys. 43, 1958 (1965).
7' B. Widom, J. Chem. Phys. 43, 3892, 3898 (1965);L. Kada-

noff, Physics 2, 263 (1966);A. Z. Patashinskii and V. L. Pokrov-
skii, Zh. Eksperim. i Teor. Fis. 50, 439 (1966) )English transl. :
Soviet Phys. —JETP 23, 292 (1966)g."C.Domb and D. L. Hunter, Proc. Phys. Soc. (London) 86,
1147 (1965);C. Domb, Ann. Acad. Sci. Fennicae A. VI. 210, 167
(1966); L. P. KadanoG et a/. , Rev. Mod. Phys. 39, 395 (1967);
M. E. Fisher, J. Appl. Phys. 38, 981 (1967)."C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962);
J. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Soc. (Lon-
don) A275, 257 (1963)."J.S. Kouvel and M. E.Fisher, Phys. Rev. 136, A1626 (1964).

79 G. A. Baker, H. F. Gilbert, J. Eve, and G. S. Rushbrooke,
Phys. Letters 20, 146 (1966).
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In this brief account we have not been able to review
the applications of the Lenz —Ising model to liquid
mixtures alloys, polymers, and random walk problems
and many other areas of science; we have not even
mentioned all the theoretical work on the model it-
self."Research on critical exponents is currently one
of the fastest-moving fields in science, and many of
the results mentioned here may well be obsolete by the
time this article appears in print. But there does seem
to be one general feature of the impact of the Lenz-
Ising model on science which is well-enough established
to be worth noting. " In constructing a theory to in-

terpret a complex physical phenomenon, a scientist
frequently has to choose between two approaches. On
the one hand, he may want to make his theory con-
tain all the possible factors which he knows must in-
Quence the eBeets he observes in the laboratory; the
theory must be as "realistic" as possible. But this ap-
proach usually leads to formulations that are mathe-
matically so complicated that the consequences of the
hypotheses cannot be deduced from the theory without
gross approximations; if the predictions of the theory
disagree with the experimental facts, it is often dificult
to know whether to attribute this to defects in the
original hypotheses, or to errors incurred by approxi-
mations in the calculations. On the other hand, one
may intentionally sacrifice some of the more realistic

0 A bibliography of papers published up to 1964 is given in my
report "History of the Lenz-Ising model, " University of Cali-
fornia, Lawrence Radiation Laboratory, Livermore, UCRL-7940
(29 June 2964). A supplement covering more recent papers is now
in preparation."'Cf. the opening remarks and views of Frenkel quoted in
Fisher's Boulder lectures (cited in Ref. 26) .

features of a model in order to obtain a simpler model
that is exactly, or almost exactly, soluble. Such over-
simplided theories are often scorned by empirically
minded scientists, since they may be completely ir-
relevant to the problem of interpreting the subtle
effects that are important in practical problems. It is
encouraging, therefore, to those who favor the second
approach, to have at least one example in which in-
sistence on getting an exact solution of a simple model
has really paid off. (And of course it is also extremely
useful to be able to test other theoretical methods,
such as the currently popular integral equations for
pair distribution functions, on a model where the exact
solution is known. sz) The Lens —Ising model provides
this example a many-body problem in which the in-
teractions between particles cannot be ignored, or
even treated successfully by perturbation theory;
and yet it i s possible, if one works hard and cleverly
enough, to get an exact solution. Here is a modern
paradigm for the fruitful application of mathematics to
physical science.
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